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Renormalization group analysis of autoregressive processes and fractional noise
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A renormalization group analysis is applied to autoregressive processes with an infinite series of coefficients.
A simple fixed point is given by a random walk, and a second class is found that is proportional to the high
order coefficients of fractional autoregressive integrated moving average~ARIMA ! processes. The approach
might be useful to detect nonstationarity in autoregressive processes.
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The renormalization group~RG! approach has been su
cessfully applied to determine large scale and long ti
properties of a large number of different physical syste
with given microscopic dynamics@1#. A very illuminating
approach dates back to Kadanoff@2#, who invented the deci-
mation of degrees of freedom associated with an itera
mapping to an effective model~see @3,4# for examples!.
Since the dynamics of natural systems is often either
complex or not known, these are frequently described us
autoregressive~AR! models to provide analyses, simulation
and forecasts@5#. To incorporate long time memory, Hoskin
extended AR processes to fractional AR~FAR! models
@equivalently, autoregressive integrated moving average
cesses ARIMA (0,d,0)#, or the so-called fractional noise#
@6–8#. For FAR models, the infinite series of regression c
efficients is determined by a single fractal dimensiond, and
the power spectrum is self-similar for small frequenci
S( f ); f 22d. In this publication, a standard RG analysis
applied to an AR process with an infinite number of regr
sion coefficients. A simple fixed point is given by the rando
walk, and a second class is proportional to Hosking’s F
process for high order coefficients. The RG might be use
to detect nonstationarity of AR processes.

The autoregressive process AR(p) for the observablext at
discrete timet and for a time intervalD is

xt5 (
n51

p

anxt2n1e t ~1!

where e t is uncorrelated white noise and thean , n
51, . . . ,p, are the regression coefficients; in the RG,p is
infinite. To determine the long term behavior a renormali
tion group analysis is constructed which includes these m
steps.~i! Nonoverlapping adjacent pairs of time steps a
combined to blocks.~ii ! The dynamics of these blocks
transformed to an AR process.~iii ! Subsequent iterations o
this procedure yield fixed points which are identified with t
long term behavior.

In the first RG step, the processxt at two neighboring
time steps is combined,xt85(xt1xt21)/A2, wheret52t is
an even time step andA2 is chosen to preserve the varianc
The AR process forxt8 within the blockt is written by add-
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ing the ARs forxt and xt21. Terms involving differences
within the blocks, e.g.,xt222xt23, are neglected since the
represent high frequency variability. The intensities at ev
and odd time steps on the right-hand side~rhs! of Eq. ~1! are
eliminated by approximatingxt and xt21 with xt8/A2. The
dynamics for the combined process becomes

xt85
a1

2
xt81

1

2 (
m51

`

~a2m2112a2m1a2m11!xt2m8

1
1

A2
~e2t1e2t21!. ~2!

The first term on the rhs~from the dynamics ofxt) leads to a
nonlinearity in the RG scheme. In the second RG step,
blocks are identified with the original timet→t andm→n.
Accordingly, the time step width is enhanced toD852D at
each RG step. Thus, the dynamical equation for the ren
malized processxt8 can be written as an AR process

xt85 (
n51

`

an8xt2n8 1e t8 ~3!

with the renormalized regression coefficients

an85
1

22a1
~a2n2112a2n1a2n11! ~4!

and the renormalized noise

e t85
A2

22a1
~e2t1e2t21!. ~5!

The variancee 2̄ of the noise increases by the factor 4/(
2a1)2 at each RG step~with the actuala1). The singularity
at a152 originates in the block size of two time steps a
the particular design of the RG. The denominator 22a1 in
Eqs.~4! and~5! is essential for the behavior of the RG ma
For a finite numberp of regression coefficients, each reno
malization step reducesp by a factor of two~approximately!.

As a first application let us consider the relation betwe
stationarity of the AR process and the RG mapping. A s
chastic process is called stationary if the mean and the v
ance are time independent, and the correlation depends
on the lag.~More stringent definitions demand that the d
tribution is time invariant.! Stationarity of the AR processxt
©2001 The American Physical Society01-1
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requires that all rootszj of the characteristic polynomia
f(z)512(n51

p anzn are outside the unit circleuzj u.1 @9#,
which might be complicated in general. Stationarity forp
51 is given if ua1u,1. Forp52 the two coefficients have to
be within the trianglea22a1,1, a11a2,1, andua2u,1.
The renormalized process of an AR~2! process is AR~1! with
a single coefficient given bya185(a112a2)/(22a1) ac-
cording to Eq.~4!. The stationarity condition for the initia
AR~2! process leads toua18u,1, i.e., the renormalized pro
cess~4! is also stationary. For a stationary AR~3! process one
can show that after two RG stepsua19u,1 ~all other coeffi-
cients vanish!. Therefore, we assume, although there is
general proof at the moment, that the RG preserves sta
arity also for higher ordersp. A violation of the stationarity
condition after renormalization might give a hint of nons
tionarity in the initial AR process. This approach is e
tremely simple, since a sufficient number of iterations of
renormalization reduces the number of coefficients to
single final coefficient.

A central issue in a RG analysis is the identification
fixed pointsan

! of Eq. ~4! since these represent the long te
behavior of the system. The sum of the fixed point regress
coefficientsan

! is unity, (n51
` an

!51, provided that the sum is
finite anda1Þ0. A first type of fixed point is obtained for a
single nonvanishing coefficienta1Þ0 that obeys the itera
tion a185a1 /(22a1) as given by Eq.~4!. Note that this map
becomes simplya852a21 for the inverse,a51/a1. The
unstable fixed pointa1

!51 represents a random walk. Th
second, trivial fixed pointa1

!50 is attractive due to the re
duction of memory by the RG.

A more complex set of fixed points with infinitely nonva
nishing parameters is reached by starting from fractio
noise~FAR processes!. FAR processes are defined to mod
long time memory with a single parameter, the dimensiond,
which leads to an infinite series of AR coefficients. The d
namics is defined as@7#

~12B!dxt5e t ~6!

with the backshift operatorB, Bxt5xt21. This can be iden-
tified as an AR process with coefficients

an52
G~n2d!

G~2d!G~n11!
. ~7!

Noninteger dimensionsd lead to fractional processes. Th
coefficients obey the recursionan115(n2d)an /(n11),
starting froma15d. For largen, an;2n212d/G(2d). For
small dimensiond→0 and largen, the FAR process coeffi
cients arean;d/n. The FAR process~7! has long time
memory with a power spectrumS( f ); f 22d for f→0. The
FAR process is stationary forudu,1/2 and 1/f noise is ob-
tained ford51/2.

A main result of the present study pertains to the beha
of FAR processes subjected to the RG procedure~4!. For
small dimension, the FAR coefficients remain fixed in t
RG,an

!;d/n (n→`). For finite dimension, a closed expre
sion for the remainingan

! could not be derived. Numerica
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analysis shows that the FAR coefficients with dimensiond
converge to a fixed series that depends ond. The higher
order coefficients are proportional to the initial FAR coef
cients and reachan

!;An212d. Thus Eq.~4! leads to

an
!5

1

22a1
!

4a2n
! , n→`, ~8!

which requiresa1
!52(1222d). Furthermore, the numerica

result hints thatA5d(12d). As an example, this largen
approximation fora3 andd51/2 deviates from the numeri
cal result by less than 4%.

The RG iterations of the initial FAR coefficientsan for
d51/2 are shown in Fig. 1 up tos510 RG steps~multiplied
by n11d). To illustrate the rate of convergence, the ins
shows the iterations fora1. The power spectrum isS( f )

5e 2̄/u12(nanexp (2pinDf)u2, where f is defined up to the
Nyquist frequencyf c51/2D, with the renormalized time

stepD and the renormalized noise variancee 2̄, both at the
actual RG step. Figure 2 showsS( f ) for the original FAR

FIG. 1. Coefficientsan multiplied by n11d for the initial FAR
process~solid! and up to 10 RG steps~dashed, step 10 with circles!.
The inset shows the convergence ofa1 for these 10 RG steps.

FIG. 2. Power spectraS( f ) for the initial FAR coefficients
~solid! and the RG result after 10 steps (1); the frequencyf is in
units of the inverse initial time stepD.
1-2
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process and for the renormalized process afters510 RG
steps. The small frequency part remains fixed.

In conclusion, the RG procedure proposed here yield
method to determine the long time behavior of AR process
The fixed points of the RG depend on the initial AR coef
cients. A finite set is given by the random walk and an in
nite series of fixed coefficients is proportional to fraction
AR processes for high coefficients. The power spectr
shows that the RG conserves the self-similar small freque
properties of the FAR process. Other classes of fixed po
are possible but could not be determined since the gen
J.

-
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solution of the fixed point equation has yet to be found.
further question is the relation between the stationarity pr
erties of an AR process and the renormalized process.
result for low order processes up to AR~3! indicates that a
violation of nonstationarity after renormalization is a hint
nonstationarity of the original process. Since the RG redu
the number of coefficients, this is a possible application
the approach.
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